Mathematics

Chapter 7 : Theorems Related To Angles In A Circle

1. If in a cyclic quadrilateral $\mathrm{ABCD}, \mathrm{AB}=\mathrm{DC}$ then prove that $\mathrm{AC}=\mathrm{BD}$.

Ans. Given : In the cyclic quadrilateral $\mathrm{ABCD}, \mathrm{AB}=\mathrm{DC}$ and the two diagonals AC and BD are intersected at the point O .
R.T.P. : $\quad \mathrm{AC}=\mathrm{BD}$

Proof: $\quad \angle \mathrm{BAC}=\angle \mathrm{BDC}$ [angles in the same segment]
$\therefore \quad \angle \mathrm{BAO}=\angle \mathrm{ODC}$
In the $\triangle \mathrm{AOB}$ and $\triangle \mathrm{ODC}, \angle \mathrm{BOA}=\angle \mathrm{COD}$ [vertically opposite angles]
$\angle \mathrm{BAO}=\angle \mathrm{ODC}$ [Proved]
$\mathrm{AB}=\mathrm{DC}$
$\Delta \mathrm{AOB} \cong \triangle \mathrm{ODC}[\mathrm{AAS}]$
$\therefore \quad \mathrm{AO}=\mathrm{DO}$ and $\mathrm{BO}=\mathrm{CO}$ [Corresponding sides]

$\therefore \quad \mathrm{AO}+\mathrm{CO}=\mathrm{DO}+\mathrm{BO}$
$\therefore \quad \mathrm{AC}=\mathrm{BD}$.
2. Two chords PQ and PR of a circle are mutually perpendicular to each other. If the length of the redius of the circle is $\mathbf{r c m}$., then find the length the chord $Q R$.
Ans. In the circle, $P Q$ and $P R$, the two chords are mutually perpendicular to each other.
$\therefore \quad \mathrm{PR} \perp \mathrm{PQ}$
$\therefore \quad \angle \mathrm{QPR}$ is the angle of semicircle
$\therefore \quad \mathrm{QR}$ is a diameter of the circle
$\because \quad$ Radius of the circle is rcm .
$\therefore \quad \mathrm{QR}=$ diameter $=2 \mathrm{rcm}$.

3. O is the circumcentre of isosceles triangle $A B C$ and $\angle A B C=120^{\circ}$; if the length of the radius of the circle is $\mathbf{5} \mathbf{~ c m}$., then find the value of the length of the side $A B$.

Ans. O is the circumcentre of isosceles triangle ABC and $\angle \mathrm{ABC}=120^{\circ}$.
Join A, O and C, O
Here $\mathrm{AB}=\mathrm{BC}$
In the $\triangle \mathrm{AOB}$ and $\triangle \mathrm{BOC}$.
$\mathrm{OA}=\mathrm{OC}$ [radii of the same circle]
$O B$ is their common sides and $A B=B C$
$\therefore \quad \triangle \mathrm{AOB} \cong \triangle \mathrm{BOC}[\mathrm{SSS}]$
$\therefore \quad \angle \mathrm{ABO}=\angle \mathrm{CBO}$ [corresponding angles]
$\therefore \quad \angle \mathrm{ABO}=\frac{120^{\circ}}{2}=60^{\circ}=\angle \mathrm{OAB}$ [radii of the same circle]
$\therefore \quad \triangle \mathrm{OAB}$ is an equilateral triangle.

$\therefore \quad \mathrm{AB}=5 \mathrm{~cm} .[\because$ radius $=5 \mathrm{~cm}$.

