Chapter 7 : Theorems Related To Angles In A Circle

1. If in a cyclic quadrilateral ABCD, AB = DC then prove that AC = BD.

- **Ans.** Given : In the cyclic quadrilateral ABCD, AB = DC and the two diagonals AC and BD are intersected at the point O.
 - R.T.P.: AC = BD

Proof : $\angle BAC = \angle BDC$ [angles in the same segment]

 $\therefore \angle BAO = \angle ODC$

In the $\triangle AOB$ and $\triangle ODC$, $\angle BOA = \angle COD$ [vertically opposite angles]

 $\angle BAO = \angle ODC$ [Proved] AB = DC

- $\triangle AOB \cong \triangle ODC [AAS]$ $\therefore AO = DO and BO = CO [Corresponding sides]$
- \therefore AO + CO = DO + BO
- \therefore AC = BD.
- 2. Two chords PQ and PR of a circle are mutually perpendicular to each other. If the length of the redius of the circle is r cm., then find the length the chord QR.

Ans. In the circle, PQ and PR, the two chords are mutually perpendicular to each other.

- \therefore PR \perp PQ
- \therefore \angle QPR is the angle of semicircle
- \therefore QR is a diameter of the circle
- \therefore Radius of the circle is r cm.
- \therefore QR = diameter = 2r cm.
- 3. O is the circumcentre of isosceles triangle ABC and ∠ABC = 120°; if the length of the radius of the circle is 5 cm., then find the value of the length of the side AB.

Ans. O is the circumcentre of isosceles triangle ABC and $\angle ABC = 120^{\circ}$.

Join A, O and C, O Here AB = BC

In the $\triangle AOB$ and $\triangle BOC$.

OA = OC [radii of the same circle]

OB is their common sides and AB = BC

 $\therefore \quad \Delta AOB \cong \Delta BOC [SSS]$

 $\therefore \ \angle ABO = \angle CBO$ [corresponding angles]

$$\therefore \qquad \angle ABO = \frac{120^{\circ}}{2} = 60^{\circ} = \angle OAB \text{ [radii of the same circle]}$$

- $\therefore \quad \Delta OAB$ is an equilateral triangle.
- \therefore AB = 5 cm. [\cdot : radius = 5 cm.]

